Thopaz™
Current Research Findings

PROVIDING ADVANCED TREATMENT WITH EASE
Thoracic Drainage System
Index

| Impact of the learning curve in the use of a novel electronic chest drainage system after pulmonary lobectomy: a case-matched analysis on the duration of chest tube usage | 5 |

| Thopaz Portable Suction Systems in Thoracic Surgery: An end user assessment and feedback in a tertiary unit | 7 |

| The benefits of digital air leak assessment after pulmonary resection: Prospective and comparative study | 9 |

| Postoperative chest tube management: measuring air leak using an electronic device decreases variability in the clinical practice | 11 |

| The quantification of postoperative air leak | 13 |
Impact of the learning curve in the use of a novel electronic chest drainage system after pulmonary lobectomy: a case-matched analysis on the duration of chest tube usage.

Study Background & Design

This study aimed to determine the duration of learning Thopaz, when first introduced into a clinical environment, and the impact it has on chest tube duration, length of stay and hospital costs. Using propensity score case-matched analysis, the first consecutive 51 lobectomy patients managed with Thopaz were compared to 51 controls managed with a traditional chest drain. There was no significant difference in the characteristics of the two matched groups (p > 0.05). In both groups, patients were placed on -15cm H2O during the day and while sleeping were placed on Water Seal (traditional systems) or Gravity Mode (Thopaz). Criteria for removing the drain at -15cm H2O were as follows: Traditional systems required an absence of air leak following repeated expiratory efforts, while on Thopaz required a flow of < 40ml/min, stable on the graph for 8h. On both systems a pleural effusion < 400ml/24h was required.

Results

Patients managed with Thopaz had a significantly shorter duration of chest tube drainage (P < 0.0001) and shorter hospital stay (P < 0.001) when compared to patients on traditional systems (Figure 1).

![Figure 1: Length of chest drainage and length of hospital stay for patients on traditional systems compared to Thopaz.](image-url)
The use of Thopaz significantly ($P < 0.001$) reduced hospital costs by an average of $1,012$ per patient (Figure 2).

![Figure 2: Per patient cost and savings associated with using Thopaz. Note: Original calculations were in Euros with conversion to US $ at a rate of 1 Euro = 1.35 US $.

Benefits of Thopaz were evident from the first patient, however the maximum benefit was achieved by patient number 40.

![Figure 3: Learning curve of Thopaz, showing that maximum benefit in using Thopaz, as measured by duration of chest drainage, is achieved after 40 patients.

Conclusions

I Compared with traditional devices, the use of Thopaz was beneficial from its initial application.

I The learning curve was short and did not affect the efficiency of the system.

I Thopaz reduced the duration of chest tube drainage and length of stay thereby significantly reducing the costs to the hospital.

I Study limitations include prior experience with digital drainage devices in this hospital, and that the study population included only pulmonary lobectomies.

S. Rathinam, A. Bradley, T. Cantlin, P. B. Rajesh

Study Background & Design
Traditional chest drainage has been achieved by connecting the chest drain bottles to wall suction. However, the negatives include; impaired patient mobility, variable suction applied to the patient, infection risk, and the assessment of air leak being subjective. Thopaz is a portable chest drain which allows for mobilization of the patient, and has scientific digital flow recordings with a built in alarm system. After 2.5 months of using Thopaz on 120 patients, 15 clinical staff on a thoracic ward were asked to evaluate Thopaz in a structured format. Staff responses graded their satisfaction on a scale of Excellent, Very good, Good, Satisfactory, Needs Improvement, or Poor. Patients with pneumothoraces who had chest drains and wall suction prior to surgery who then had Thopaz following surgery were also requested to give their feedback.

Results
The results of the survey of clinical staff satisfaction of Thopaz are as follows:

![Figure 1: Assessment on the Instructions for Use of Thopaz.]

![Figure 2: Assessment on the functionality of Thopaz]
Additional, subjective feedback from patients was that they liked the light, compact design, and the quietness compared to the sound of bubbling. Clinical feedback was that they liked the mobilization of the patients and scientific removal of chest drain.

Conclusions

1. Thopaz was found to be user friendly and liked by staff and patients.
2. Additional clinical benefits cited were objective decision making on when to remove the chest tube, improved patient mobilization and therefore physiotherapy, a reduction in use of x-rays, and improved infection control due to reduced risk of spillages.
The benefits of digital air leak assessment after pulmonary resection: Prospective and comparative study

J. M. Mier, L. Molins, J. J. Fibla

Study Background & Design

With traditional systems, the grading of air leaks still relies on the measurement of “bubbles in a chamber”, a method inherently prone to subjective interpretation and observer variability. To this end a prospective, consecutive and comparative study was performed to evaluate the efficacy of digital devices (Thopaz and the now defunct DigiVent) in measuring the postoperative air leak compared to a traditional device and how this impacts upon the decision to withdraw chest tubes after lung resection. A total of 75 patients who underwent elective pulmonary resection were equally divided into the three groups. There was no significant difference between the groups regarding demographics or respiratory function. Negative pressure set on the systems was -15cmH₂O from the closure of the chest wall muscle to the time when the drain was removed. The chest drain was removed when < 10 ml/min for digital devices and no bubbles for the traditional system was maintained for 12 h. Pleural effusion needed to be below 200 ml in 24 h.

Results

Chest tube removal occurred earlier for Thopaz than occurred for Digivent and the traditional system.

![Figure 1: The length of drainage in days for a Traditional Chest Drain, Digivent and Thopaz.](image-url)
The standard deviation for the traditional system was far greater than occurs for either Digivent or Thopaz, demonstrating that inter-observer differences were reduced when using digital devices.

![Figure 2: The standard deviation for length of drainage in days for a Traditional Chest Drain, Digivent and Thopaz.](image)

Additional, subjective feedback was that patients and nurses were more comfortable with digital devices, while the surgeons felt they obtained more objective information.

Conclusions

- The digital and continuous measurement of air leak instead of the currently used traditional systems reduced the chest tube withdrawal and hospital stay by more accurately and reproducibly measuring air leak.
- The Thopaz alarm mechanism is very useful and the integrated suction provides significant independence to the patient.
- It is possible to remove the drain significantly earlier in patients with Thopaz. Had the sample size been larger, the result might have been even more conclusive.
- Study limitations were that the sample size was small and the lack of randomized groups.
Study Background & Design

The aim of this study was to measure inter-observer variability and its impact upon deciding when to withdraw chest tubes after lung resection and to evaluate if the use of an electronic device to measure postoperative air leak decreased variations in clinical practice. In a prospective randomized study, 61 patients undergoing pulmonary resection were randomly assigned to either the digital group (using the now defunct Digivent chest drain) or the traditional group (on standard water seal). Having established the chest tube withdrawal criteria, two thoracic surgeons with comparable clinical experience independently evaluated whether to withdraw the chest tube. Each was blinded to the decision of their counterpart. Fifty-four observations were recorded in the traditional group and 67 observations were recorded in the digital group. The inter-observer variability and kappa coefficient were calculated.

Results

The inter-observer variability on when to remove the chest tube is much greater for the Traditional System when compared to the Digital System.

<table>
<thead>
<tr>
<th>Digital System</th>
<th>Observation 1 Decision to Remove Chest Tube</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Observer 2 decision to remove chest tube</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Traditional System</th>
<th>Observation 1 Decision to Remove Chest Tube</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Observer 2 decision to remove chest tube</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

Figure 1: Showing the inter-observer variability for the Traditional and Digital Systems.
The Kappa Coefficient shows poor agreement between observers for the Traditional System and good agreement for the Digital System.

Figure 2: Kappa Coefficient showing agreement between clinical decisions on whether to remove the chest tube for the Traditional System and Digital System. A low Kappa Coefficient suggests poor agreement between observers, whereas a high Kappa Coefficient suggests good agreement between observers.

Conclusion

There was a high rate of disagreement as to when to remove chest tube after lung resection for the traditional water seal system, and a high rate of agreement when an electronic device with a digital air flow meter was used.
Study Background & Design

Air leaks are the most frequent cause of prolonged hospital stay, increased cost and patient dissatisfaction. The management of chest tubes in patients with air leaks is optimized when the air leak is scientifically evaluated. To eliminate subjectivity, companies have developed digital pleural drainage systems that are able to quantify the size of air leaks in ml/min. In this study, 98 patients undergoing elective pulmonary resection were recruited, 48 into the Thopaz group and 50 into the traditional system group. Patient age, body mass index, pulmonary function tests and types of procedures were similar in both groups.

Results

Comparison shows that patients on Thopaz have a significantly reduced duration of chest drainage than those on the Traditional System. There was a reduction in length of hospital stay for the Thopaz group, however this did not reach significance.

![Figure 1: Showing a comparison between a Traditional System and Thopaz in the duration of chest drainage, and length of hospital stay](image-url)
Comparison shows that pneumothorax patients on Thopaz have a significantly reduced length of hospital stay than those on the Traditional System.

![Comparison of days in hospital for Traditional System and Thopaz](image)

Figure 2: Showing a comparison between a Traditional System and Thopaz in the length of hospital stay for pneumothorax patients.

Conclusion

- Treatment of air leaks has evolved to improved chest tube management through the use of scientific measures, leading to the earlier removal of chest tubes, decreased pain and morbidity and the early discharge of patients.
- There is little question that digital air leak devices are the future of the bedside management of air leaks.
- Further studies are needed to determine their efficacy on all patients requiring drainage, and to determine costs savings.